43 research outputs found

    Maximum Likelihood Distillation for Robust Modulation Classification

    Full text link
    Deep Neural Networks are being extensively used in communication systems and Automatic Modulation Classification (AMC) in particular. However, they are very susceptible to small adversarial perturbations that are carefully crafted to change the network decision. In this work, we build on knowledge distillation ideas and adversarial training in order to build more robust AMC systems. We first outline the importance of the quality of the training data in terms of accuracy and robustness of the model. We then propose to use the Maximum Likelihood function, which could solve the AMC problem in offline settings, to generate better training labels. Those labels teach the model to be uncertain in challenging conditions, which permits to increase the accuracy, as well as the robustness of the model when combined with adversarial training. Interestingly, we observe that this increase in performance transfers to online settings, where the Maximum Likelihood function cannot be used in practice. Overall, this work highlights the potential of learning to be uncertain in difficult scenarios, compared to directly removing label noise

    Single-board Device Individual Authentication based on Hardware Performance and Autoencoder Transformer Models

    Full text link
    The proliferation of the Internet of Things (IoT) has led to the emergence of crowdsensing applications, where a multitude of interconnected devices collaboratively collect and analyze data. Ensuring the authenticity and integrity of the data collected by these devices is crucial for reliable decision-making and maintaining trust in the system. Traditional authentication methods are often vulnerable to attacks or can be easily duplicated, posing challenges to securing crowdsensing applications. Besides, current solutions leveraging device behavior are mostly focused on device identification, which is a simpler task than authentication. To address these issues, an individual IoT device authentication framework based on hardware behavior fingerprinting and Transformer autoencoders is proposed in this work. This solution leverages the inherent imperfections and variations in IoT device hardware to differentiate between devices with identical specifications. By monitoring and analyzing the behavior of key hardware components, such as the CPU, GPU, RAM, and Storage on devices, unique fingerprints for each device are created. The performance samples are considered as time series data and used to train outlier detection transformer models, one per device and aiming to model its normal data distribution. Then, the framework is validated within a spectrum crowdsensing system leveraging Raspberry Pi devices. After a pool of experiments, the model from each device is able to individually authenticate it between the 45 devices employed for validation. An average True Positive Rate (TPR) of 0.74+-0.13 and an average maximum False Positive Rate (FPR) of 0.06+-0.09 demonstrate the effectiveness of this approach in enhancing authentication, security, and trust in crowdsensing applications

    MTFS: a Moving Target Defense-Enabled File System for Malware Mitigation

    Full text link
    Ransomware has remained one of the most notorious threats in the cybersecurity field. Moving Target Defense (MTD) has been proposed as a novel paradigm for proactive defense. Although various approaches leverage MTD, few of them rely on the operating system and, specifically, the file system, thereby making them dependent on other computing devices. Furthermore, existing ransomware defense techniques merely replicate or detect attacks, without preventing them. Thus, this paper introduces the MTFS overlay file system and the design and implementation of three novel MTD techniques implemented on top of it. One delaying attackers, one trapping recursive directory traversal, and another one hiding file types. The effectiveness of the techniques are shown in two experiments. First, it is shown that the techniques can delay and mitigate ransomware on real IoT devices. Secondly, in a broader scope, the solution was confronted with 14 ransomware samples, highlighting that it can save 97% of the files

    CyberSpec: Intelligent Behavioral Fingerprinting to Detect Attacks on Crowdsensing Spectrum Sensors

    Full text link
    Integrated sensing and communication (ISAC) is a novel paradigm using crowdsensing spectrum sensors to help with the management of spectrum scarcity. However, well-known vulnerabilities of resource-constrained spectrum sensors and the possibility of being manipulated by users with physical access complicate their protection against spectrum sensing data falsification (SSDF) attacks. Most recent literature suggests using behavioral fingerprinting and Machine/Deep Learning (ML/DL) for improving similar cybersecurity issues. Nevertheless, the applicability of these techniques in resource-constrained devices, the impact of attacks affecting spectrum data integrity, and the performance and scalability of models suitable for heterogeneous sensors types are still open challenges. To improve limitations, this work presents seven SSDF attacks affecting spectrum sensors and introduces CyberSpec, an ML/DL-oriented framework using device behavioral fingerprinting to detect anomalies produced by SSDF attacks affecting resource-constrained spectrum sensors. CyberSpec has been implemented and validated in ElectroSense, a real crowdsensing RF monitoring platform where several configurations of the proposed SSDF attacks have been executed in different sensors. A pool of experiments with different unsupervised ML/DL-based models has demonstrated the suitability of CyberSpec detecting the previous attacks within an acceptable timeframe

    Towards Reliable Stochastic Data-Driven Models Applied to the Energy Saving in Buildings

    Get PDF
    We aim at the elaboration of Information Systems able to optimize energy consumption in buildings while preserving human comfort. Our focus is in the use of state-based stochastic modeling applied to temporal signals acquired from heterogeneous sources such as distributed sensors, weather web services, calendar information and user triggered events. Our general scientic objectives are: (1) global instead of local optimization of building automation sub-systems (heating, ventilation, cooling, solar shadings, electric lightings), (2) generalization to unseen building conguration or usage through self-learning data-driven algorithms and (3) inclusion of stochastic state-based modeling to better cope with seasonal and building activity patterns. We leverage on state-based models such as Hidden Markov Models (HMMs) to be able to capture the spatial (states) and temporal (sequence of states) characteristics of the signals. We envision several application layers as per the intrinsic nature of the signals to be modeled. We also envision room-level systems able to leverage on a set of distributed sensors (temperature, presence, electricity consumption, etc.). A typical example of room-level system is to infer room occupancy information or activities done in the rooms as a function of time. Finally, building-level systems can be composed to infer global usage and to propose optimization strategies for the building as a whole. In our approach, each layer may be fed by the output of the previous layers. More specically in this paper, we report on the design, conception and validation of several machine learning applications. We present three different applications of state-based modeling. In the rst case we report on the identication of consumer appliances through an analysis of their electric loads. In the second case we perform the activity recognition task, representing human activities through state-based models. The third case concerns the season prediction using building data, building characteristic parameters and meteorological data

    Federated Learning for Malware Detection in IoT Devices

    Full text link
    The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area

    Intelligent and behavioral-based detection of malware in IoT spectrum sensors

    Full text link
    The number of Cyber-Physical Systems (CPS) available in industrial environments is growing mainly due to the evolution of the Internet-of-Things (IoT) paradigm. In such a context, radio frequency spectrum sensing in industrial scenarios is one of the most interesting applications of CPS due to the scarcity of the spectrum. Despite the benefits of operational platforms, IoT spectrum sensors are vulnerable to heterogeneous malware. The usage of behavioral fingerprinting and machine learning has shown merit in detecting cyberattacks. Still, there exist challenges in terms of (i) designing, deploying, and evaluating ML-based fingerprinting solutions able to detect malware attacks affecting real IoT spectrum sensors, (ii) analyzing the suitability of kernel events to create stable and precise fingerprints of spectrum sensors, and (iii) detecting recent malware samples affecting real IoT spectrum sensors of crowdsensing platforms. Thus, this work presents a detection framework that applies device behavioral fingerprinting and machine learning to detect anomalies and classify different botnets, rootkits, backdoors, ransomware and cryptojackers affecting real IoT spectrum sensors. Kernel events from CPU, memory, network,file system, scheduler, drivers, and random number generation have been analyzed, selected, and monitored to create device behavioral fingerprints. During testing, an IoT spectrum sensor of the ElectroSense platform has been infected with ten recent malware samples (two botnets, three rootkits, three backdoors, one ransomware, and one cryptojacker) to measure the detection performance of the framework in two different network configurations. Both supervised and semi-supervised approaches provided promising results when detecting and classifying malicious behaviors from the eight previous malware and seven normal behaviors. In particular, the framework obtained 0.88–0.90 true positive rate when detecting the previous malicious behaviors as unseen or zero-day attacks and 0.94–0.96 F1-score when classifying the

    Federated Learning for Malware Detection in IoT Devices

    Full text link
    The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of intelligent services and applications empowered by artificial intelligence (AI). Traditionally, AI techniques require centralized data collection and processing that may not be feasible in realistic application scenarios due to the high scalability of modern IoT networks and growing data privacy concerns. Federated Learning (FL) has emerged as a distributed collaborative AI approach that can enable many intelligent IoT applications, by allowing for AI training at distributed IoT devices without the need for data sharing. In this article, we provide a comprehensive survey of the emerging applications of FL in IoT networks, beginning from an introduction to the recent advances in FL and IoT to a discussion of their integration. Particularly, we explore and analyze the potential of FL for enabling a wide range of IoT services, including IoT data sharing, data offloading and caching, attack detection, localization, mobile crowdsensing, and IoT privacy and security. We then provide an extensive survey of the use of FL in various key IoT applications such as smart healthcare, smart transportation, Unmanned Aerial Vehicles (UAVs), smart cities, and smart industry. The important lessons learned from this review of the FL-IoT services and applications are also highlighted. We complete this survey by highlighting the current challenges and possible directions for future research in this booming area

    Robust Federated Learning for execution time-based device model identification under label-flipping attack

    Full text link
    The computing device deployment explosion experienced in recent years, motivated by the advances of technologies such as Internet-of-Things (IoT) and 5G, has led to a global scenario with increasing cybersecurity risks and threats. Among them, device spoofing and impersonation cyberattacks stand out due to their impact and, usually, low complexity required to be launched. To solve this issue, several solutions have emerged to identify device models and types based on the combination of behavioral fingerprinting and Machine/Deep Learning (ML/DL) techniques. However, these solutions are not appropriate for scenarios where data privacy and protection are a must, as they require data centralization for processing. In this context, newer approaches such as Federated Learning (FL) have not been fully explored yet, especially when malicious clients are present in the scenario setup. The present work analyzes and compares the device model identification performance of a centralized DL model with an FL one while using execution time-based events. For experimental purposes, a dataset containing execution-time features of 55 Raspberry Pis belonging to four different models has been collected and published. Using this dataset, the proposed solution achieved 0.9999 accuracy in both setups, centralized and federated, showing no performance decrease while preserving data privacy. Later, the impact of a label-flipping attack during the federated model training is evaluated using several aggregation mechanisms as countermeasures. Zeno and coordinate-wise median aggregation show the best performance, although their performance greatly degrades when the percentage of fully malicious clients (all training samples poisoned) grows over 50%
    corecore